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This Appendix reports several additional results for “Why Do Option Returns Change Sign 

from Day to Night?” Specifically, it includes the following: (a) several figures and tables that 

complement the main results; (b) results from computing option returns using trade prices and for 

(c) straddle and unhedged option returns and (d) day-night volatility seasonality; (e) details of the 

Black-Scholes-Merton (BSM) and Heston models with day-night volatility seasonality; and (f) the 

overnight trading strategy net of trading costs. 

A.1. Properties of Day Night Option Returns 

Several tests enhance understanding of how each year, especially during the financial 

crisis, contributes to intraday returns. First, each year’s intraday return, including 2008, is not 

statistically different from the average returns excluding the given year. Thus, individually, none 

of the years is special in this statistical sense. Next, after excluding the crisis, average intraday 

returns are still positive but not statistically significant (t-statistic = 1.7). Even zero return would 

be puzzling though. We also study how much of this result is owing to noise in prices. The S&P500 

index, albeit important, is merely a single security, so averaging across multiple securities reduces 

noise in option returns (e.g., due to large bid-ask spreads). This is why we also study average 

option returns of the three most liquid ETFs: S&P 500 (SPY), NASDAQ 100 (QQQ), and Russell 

2000 (IWM). Besides SPX, these three have the most actively traded options in OPRA data. Their 

total option volume is still lower than S&P500 index options (Johnson, et al. (2016)), but their 

option bid-ask spreads are less than half the size of SPX’s. Obviously, SPY and SPX returns are 

extremely correlated. Panel B of Table A.2 shows that average option intraday returns over these 

three ETFs are positive in eight out of ten years (with the exception of -0.17% in 2004 and -0.05% 

in 2012). Similarly, Panel A studies equity option returns by year. Intraday returns are positive in 

all but three years: -0.16% in 2009, -0.08% in 2010, and -0.11% in 2012. For both major ETFs and 
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equity options, their 2008 returns are expectedly more positive than in other years, but average 

intraday returns excluding the crisis remain positive and significant. Averaging across multiple 

contracts with lower option bid-ask spread indeed reduces noise in option returns. 

We also show the day-night option returns asymmetry cannot be explained by S&P 500 

index returns and VIX futures returns. Table A.6 estimates a regression of S&P index option 

returns on VIX futures returns and S&P index returns separately for day and night periods. First, 

delta-hedging works reasonably well, as the coefficient for index returns is zero intraday and 

relatively small overnight. Second, intraday returns for options and VIX futures are highly 

correlated with t-statistic of 17. However, night returns are much less correlated, as the coefficient 

is lower than for intraday (0.66 versus 0.92) with t-statistic of 5.6. Perhaps the options and volatility 

futures markets are less integrated during the night. Importantly, volatility and market risk factors 

explain only a small portion of the day-night effect. Indeed, the intercept, which corresponds to 

alpha/abnormal returns, is 0.24% for intraday, which is close to 0.28% average intraday return. 

Night return decreases slightly from -1.08% to -0.89% after controlling for market and volatility 

factors.  

To explore how S&P 500 option returns depend on market conditions, we estimate time-

series regressions of day and night returns and their difference on popular predictors, including 

day-night volatility ratio, absolute stock return as proxy for realized volatility, option bid-ask 

spread, implied volatility, volatility skew, variance risk-premium, implied volatility spread, and 

option order imbalances computed from open-close and intraday data. Table A.12 shows that none 

of the variables significantly predicts the day-night return difference. The IV spread and intraday 

order imbalance negatively predict next-day overnight returns, while open-close imbalances 

positively predict next-day intraday return only. Out of nine predictors, only few are marginally 
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statistically significant. Perhaps we do not have enough statistical power to study conditional 

properties of S&P day-night option returns. This is why our main tests use a panel of equity option 

returns. 

We also sort trading days into portfolios based on market volatility, tail risk, option 

liquidity, interest rates, and investor sentiment. Panel A of Table A.11 shows that market 

conditions produce little variation in overnight returns. Night returns are slightly more negative 

when VIX is high, and interest rates and investor sentiment are low. Intraday returns, conversely, 

are positive when volatility is high or option liquidity is low. Option intraday returns are also 

increasing in the AAII investor sentiment, which is based on a survey of how bullish investors are 

about the stock market, but are decreasing in the Baker and Wurgler (2006) sentiment. 

Interestingly, the BW sentiment is the only variable that produces significant high-low spread for 

both night and day returns (-0.62% and -0.54%). Next, we use two popular tail risk measures 

proposed by Bogou and Jiang (KJ, 2014) and Du and Kapadia (DK, 2012) to explore whether rare 

disasters or tail risk can explain the day-night effect. Panel B of Table A.11 shows that systematic 

tail risk produces little variation in either day or night option returns. 

Finally, we compare day and night return distributions for the underlying in Table A.1. 

S&P 500 index returns are close to zero: 0.008% overnight and -0.004% intraday. That is, the 

difference is only one basis point and is not statistically significant.  

A.2. Option Returns Using Trade Prices 

In this section, we show that our main result is robust to computing option returns using 

trade prices instead of the quote midpoints. Computing returns with the quote midpoints is a de 

facto standard and for good reason. Besides being supported by many microstructure models, the 

quote midpoint has advantageous empirical properties: it is intuitive, observed at every instance, 
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and not affected by the bid-ask spread bounce. In some markets, there is concern about whether 

the bid and ask prices are tradable; but in the options market, the majority of trades are executed 

within the bid-ask spread. For equity options, most trades are executed at either the bid or ask. 

The advantage of using trade prices is that these are actual transactions, and thus there is 

less uncertainty about tradability. Unfortunately, trade prices are obviously only observed at the 

time of a trade. Thus, to estimate intraday option returns with trade prices, our sample is perforce 

limited to option contracts that traded near both the open and close on a given day. A similar 

criterion is used for overnight returns (trade around close of the previous day and open of the 

current day). This requirement greatly reduces the sample size, as many options trade infrequently. 

Also, trade prices are noisy, due to the bid-ask spread bounce, as buyer-initiated (seller) trades are 

typically executed above (below) the fair value.  

We first compare average trade prices with the quote midpoints, and then compare day and 

night option returns for two approaches. Panel A of Table A.8 reports the dollar and relative 

differences between option trade prices and midpoints. For each trade, we compute the difference 

between the trade price and the pre-trade quote midpoint. We further normalize it by the quote 

midpoint to compute the relative difference. We do not account for the trade direction (as in the 

effective bid-ask spread) because we study the bias between two prices and not transaction costs.  

Both differences are slightly positive, meaning that trade prices are systematically higher 

than quote midpoints. This is to be expected because buyer-initiated trades outnumber sells for 

index options. The dollar difference is 0.63 cents on average and ranges between 0.24 cents in the 

morning to 0.99 cents in the afternoon (average option price is about seven dollars). Similarly, the 

relative difference is 0.09% and ranges from 0.07% to 0.12%. Almost by construction, the price 

difference tracks closely the patterns in order imbalance discussed in Section 4.2 and shown in 
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Table 6. Order imbalance is positive for index options, particularly in the afternoon. Simple ad hoc 

calculations show that the price difference is mostly driven by positive order imbalance. 

Multiplying a 3% order imbalance from Table 6 by a 3% typical effective bid-ask half-spread 

produces a 0.09% expected bias, which matches the price difference in Table A.8. Also, note the 

0.05% difference in prices between morning and afternoon (0.12% minus 0.07%) is small 

compared to intraday option returns (0.3%).  Overall, the effect of buys and sells cancel each other, 

and the average trade price is relatively close to the quote midpoint.  

Of course, the most important test here is to compare not just prices but option returns. As 

both open and close trade-based prices are slightly higher than option quote midpoints, this small 

positive bias cancels out and produces similar option returns as returns based on the quote 

midpoints. We compute option returns using trades the same way as from the quotes except we 

only delta hedge once intraday. The reason is that the sample of options that trade at every intraday 

subperiod cut-off is small, and the benefits of frequent delta-hedging are small.  

Panel B of Table A.8 shows a 0.44% average intraday return and a -2.26% night return 

with t-statistics of 2.8 and -17.8. The return magnitudes are larger than the baseline’s (quote 

midpoint) case (0.29% and -1.04%) because the subsample of traded options overweighs short-

term options, as they are traded more frequently. We find similar magnitudes for both call and put 

options. As for the quote midpoint case, returns are more extreme for out-of-the money options 

because of their higher leverage. Interestingly, overnight returns are close to zero for deep-in-the 

money options, perhaps because these options rarely trade. Long-term and ITM options trade 

infrequently, while OTM short-term options are the most liquid.  

Overall, our main result is robust when using option trade prices instead of the quote 

midpoints for computing option returns. However, both approaches to computing option returns 
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make an implicit assumption that the quote midpoint (trade price) is perhaps noisy but represents 

an unbiased estimate of the option fair value. The fair value can potentially be anywhere between 

the bid and ask price, which could be far apart because of the large option bid-ask spreads. Our 

results in this section and other robustness tests significantly reduce, but not completely eliminate, 

this concern. 

 

A.3. Straddle and Unhedged Option Returns 

Our main return measure, the delta hedged option return, relies on the ability to hedge a 

call/put by trading in the underlying. This can raise several potential concerns. First, the 

timestamps could be desynchronized across the two markets, thus leading to put-call parity 

violations and other microstructure effects. Luckily, our data are synchronized up to a few 

milliseconds, as the data provider aggregates from both markets simultaneously. Second, trading 

in the underlying requires posting margin that may not be properly accounted in option return 

calculations. Finally, as the portfolio consists of options and the underlying, it could be the case 

that the underlying part rather than option position drives our return results.  

In this section, we study two option return measures that do not require hedging in the underlying 

to elevate these concerns. Raw returns require no delta-hedging, while straddle returns are hedged 

by combining calls with corresponding puts. Raw returns are equivalent to delta hedged returns 

with option delta set to zero; as such, they can be computed similar to delta hedged returns. Panel 

B of Table A.7 reports average raw option returns. The results appear favorable. Day and night 

option returns are 0.22% and -0.93% per day respectively with t-statistics of 2.3 and -12.1. Taking 

an average across calls (positive delta) and puts (negative delta) to compute returns on a given day 

provides implicit delta-hedging (the residual delta is small). As a result, average raw returns have 

similar magnitudes to the delta hedged returns in Table 1. Then we compute raw returns separately 
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for calls and puts; intraday returns are similar (0.3%), but calls have almost two times less negative 

returns overnight (-0.6% vs. -1.1%). This pattern is consistent with the equity risk premium being 

small intraday and large overnight (calls have a positive delta and thus benefit from positive stock 

returns). 

We form a straddle portfolio by combining a call with as many corresponding puts (with 

the same strike and expiration) to make it delta-neutral. A typical straddle portfolio includes one 

call and one put (on average). We then compute straddle returns the same way as raw returns for 

a delta hedged portfolio (i.e., no delta-hedging is done except for combining calls with puts). As 

reported in Panel A of Table A.7, straddle returns are similar to delta hedged returns in Table 1. 

Day- and night-option returns are 0.18% and -0.85% per day, respectively, with t-statistics of 2.5 

and -17.7. The day-night return asymmetry is observed for all moneyness categories. Finally, 

forming a straddle portfolio our way is not critical for our results, because as for the raw returns 

there is implicit delta-hedging from averaging over call and put returns. 

Overall, results for raw and straddle returns together with other robustness tests in the paper 

suggest that our main results are robust to delta-hedging. 

A.4. Day and Night Volatility  

In this section, we explore the day-night volatility seasonality, the main ingredient of the 

volatility bias. We explore the seasonality for stocks and S&P 500 index. Although it is well-

known that volatility is higher intraday, surprisingly little is known about how much higher it is. 

Using five stocks between 1974 and 1977, Oldfield and Rogalski (1980) find the day-night 

volatility ratio of 2. For 50 stocks from the Tokyo exchange, Amihud and Mendelson (1991) show 

that volatility is higher in trading compared to non-trading periods. Converting their estimates of 

day and night return variances produces a day-night volatility ratio of 1.5. Stoll and Whaley (1990) 
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find a volatility ratio of 2.3 for NYSE stocks during 1982 through 1986. These estimates are 

broadly consistent with what we find in our sample. Surprisingly, more recent references are 

seemingly not extant.  

To compute the day-night volatility ratio, we first compute night (close-to-open) and day 

(open-to-close) volatilities as standard volatility but with close-to-open and open-to-close returns 

(i.e., night volatility is an average of a square root of the sum of squared close-to-open returns over 

the previous 60 days). To make day and night volatilities comparable on a per-hour basis, we 

convert day and night volatilities to the same (per-hour) time length using a conversion ratio of 

1.64 (= �17.5 6.5⁄  ) as night and day periods are 17.5 and 6.5 hours, respectively. We then 

compute a simple ratio of the intraday and overnight volatilities.   

Figure 3 shows day and night volatilities and their ratio for S&P500 index over our sample 

period. Both volatilities expectedly spike during the financial crisis and remain low otherwise. 

However, the volatility ratio is surprisingly stable even during the crisis. The ratio slowly decreases 

from about 3.5 in 2004 to about two in 2013. Most of the decease occurred during the late 2007 to 

2009 period, then stock liquidity improved substantially owing to regulatory changes. 

Interestingly, the decreasing trend in total volatility that received so much public attention recently 

is due to the decline in intraday, rather than overnight, volatility. We also explore volatility ratio 

trends for individual stocks. Figure A.2 shows how distribution of the volatility ratio across stocks 

(quantiles and the mean) evolved over the sample period. Average volatility ratio declined from 

3.4 to 2.8, much less than for the index. The distribution is fairly symmetric, with the mean and 

median tracking each other closely. The top and bottom deciles have a volatility ratio of 4.5 and 

1.6, respectively, and are consistent over time. The fact that the day-night volatility ratio does 

change over time is important. The volatility literature typically estimates realized volatility from 
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intraday data and then annualizes it using an ad hoc day-night volatility ratio. We argue that the 

day-night volatility ratio should be estimated carefully, otherwise such volatility estimates may be 

substantially biased.  

Overall, the volatility ratio fluctuates in a relatively narrow range (e.g., from 1.5 to 3.5 for 

S&P index). We use this range to simulate day and night option returns for a grid of plausible 

volatility ratio values. We leave for future research to enhance understanding of the economics 

behind the trends in the volatility ratio. 

A.5. BSM Model with Volatility Seasonality 

In this section, we explain the details of how we add the day-night volatility seasonality 

and the volatility bias to the standard Black-Scholes-Merton model. We first explain the basic 

procedure for the BSM model with the volatility seasonality. The underlying price, 𝑆𝑆𝑡𝑡, follows a 

geometric Brownian motion with deterministic time-varying volatility to introduce the day-night 

volatility seasonality. In particular, 

𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

= 𝜇𝜇𝜇𝜇𝜇𝜇 + 𝜎𝜎𝑡𝑡𝜇𝜇𝐵𝐵𝑡𝑡,      (A.1) 

where 𝐵𝐵𝑡𝑡 is a simple Brownian motion, and 𝜎𝜎𝑡𝑡 is the annualized instantaneous volatility for the 

underlying. To introduce the volatility seasonality, we set instantaneous volatility 𝜎𝜎𝑡𝑡 = 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 for 

intraday periods, and 𝜎𝜎𝑡𝑡 = 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 for overnight periods, with 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 > 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡. Obviously, this is a 

minor adjustment to the classic BSM model, and option prices can be easily solved for. The 

European call and put option prices for the no dividend case are: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑁𝑁(𝜇𝜇1) − 𝐾𝐾𝑒𝑒−𝑟𝑟𝑓𝑓(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝜇𝜇2),    (A.2) 

𝑃𝑃𝑃𝑃𝜇𝜇𝑡𝑡 = 𝐾𝐾𝑒𝑒−𝑟𝑟𝑓𝑓(𝑇𝑇−𝑡𝑡)𝑁𝑁(−𝜇𝜇2) − 𝑆𝑆𝑡𝑡𝑁𝑁(−𝜇𝜇1), 

where 
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𝜇𝜇1 =
𝐶𝐶𝑙𝑙 �𝑆𝑆𝑡𝑡𝐾𝐾� + 𝑟𝑟𝑓𝑓(𝑇𝑇 − 𝜇𝜇) + 1

2 [𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑2 (𝑇𝑇 − 𝜇𝜇)𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡2 (𝑇𝑇 − 𝜇𝜇)𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡]

�𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑2 (𝑇𝑇 − 𝜇𝜇)𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡2 (𝑇𝑇 − 𝜇𝜇)𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡
, 

𝐶𝐶𝑙𝑙𝜇𝜇,𝜇𝜇2 = 𝜇𝜇1 − �𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑2 (𝑇𝑇 − 𝜇𝜇)𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡2 (𝑇𝑇 − 𝜇𝜇)𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡, 

and 𝑁𝑁(∙) is the cumulative function of standard Gaussian distribution. (𝑇𝑇 − 𝜇𝜇)𝑑𝑑𝑑𝑑𝑑𝑑 is a sum of the 

day periods over 𝑇𝑇 − 𝜇𝜇, in years. Similarly, (𝑇𝑇 − 𝜇𝜇)𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 is a sum of the night periods. These simple 

formulas collapse to the standard BSM prices if 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 = 𝜎𝜎. 

We choose model parameters to match key return moments of the S&P 500 index and its 

options during our sample period 2004 to 2013. In particular, we assume an expected return of 

𝜇𝜇 = 5.08%, volatility  𝜎𝜎 = 14.88%, risk-free rate 𝑟𝑟𝑓𝑓 = 1.52%, and implied volatility 𝜎𝜎𝐼𝐼𝐼𝐼 = 21%. 

The implied volatility  𝜎𝜎𝐼𝐼𝐼𝐼 is set higher than the actual volatility 𝜎𝜎 to produce the -0.7% daily delta 

hedged option return observed in the data. Higher 𝜎𝜎𝐼𝐼𝐼𝐼 relative to 𝜎𝜎 is a common way to introduce 

the variance risk premium in the BSM model. We initially set the day-night volatility ratio  λ =

2.5, but also consider other plausible values. The day-night ratio is simply the ratio of two 

instantaneous volatilities λ = 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡

. Panel A of Table A.15 summarizes parameter values.  

We can compute average daily variance using time-weighted day and night variances: 

𝜎𝜎2 = 17.5
24

𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡2 + 6.5
24
𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑2     (A.3) 

where night and day periods are 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 = 17.5 and 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 = 6.5 hours respectively, and 

𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 and 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 are instantaneous (per hour) day and night volatilities. We set volatility 𝜎𝜎 to match 

historical data and choosing the day-night volatility ratio (e.g., 𝜆𝜆 = 2.5), we can then compute 

𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 and 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡. I.e., 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 (𝜎𝜎, 𝜆𝜆) and 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 (𝜎𝜎, 𝜆𝜆). 
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After model parameters are set to match historical data, we simulate the model to compute 

day and night option returns. E.g., for overnight returns, we first compute the option price at the 

close with Eq. (A.2). We then simulate close-to-open returns for the underlying using Eq. (A.1), 

and compute open price for the same option using Eq. (A.2), which takes into account the new 

underlying price.  We then compute the overnight option return from close and open prices for the 

option and the underlying using Eq. (1) and (2). We similarly compute intraday returns from 

simulated open and close prices. We simulate the model using a 20-year period and a 365-day 

year. The first 10% of the sample is treated as burn-in period and, therefore, is discarded. We then 

average option returns over all the simulations. 

How do we add the volatility bias? Eq. (A.2) assumes that options are priced using the 

correct day-night volatility ratio 𝜆𝜆. The volatility bias argues that options are priced using incorrect 

volatility ratio 𝜆𝜆𝐼𝐼𝐼𝐼 ≠ 𝜆𝜆. Thus, the bias can be easily included in the model by simply computing 

option prices using 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 (𝜎𝜎, 𝜆𝜆𝐼𝐼𝐼𝐼) and 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 (𝜎𝜎, 𝜆𝜆𝐼𝐼𝐼𝐼) but using the correct ratio 𝜆𝜆 to simulate the 

underlying price. 

A.6. Heston Model with Volatility Seasonality 

The Heston (1983) stochastic volatility model is a common way to introduce the negative 

variance risk premium. We add the volatility seasonality to the standard Heston framework. In 

particular, the underlying price follows, 

𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

= 𝜇𝜇𝜇𝜇𝜇𝜇 + �𝑉𝑉𝑡𝑡𝜇𝜇𝐵𝐵𝑡𝑡1,      (A.4) 

where 𝐵𝐵𝑡𝑡1 is a Brownian motion with no drift. 𝑉𝑉𝑡𝑡 is the instantaneous stochastic variance. The 

stochastic volatility follows square-root mean-reverting process, 

𝜇𝜇𝑉𝑉𝑡𝑡 = 𝜅𝜅(𝜃𝜃 − 𝑉𝑉𝑡𝑡)𝜇𝜇𝜇𝜇 + 𝜂𝜂�𝑉𝑉𝑡𝑡𝜇𝜇𝐵𝐵𝑡𝑡2,     (A.5) 
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where 𝜅𝜅 is the mean-reverting speed, 𝜃𝜃 is the long-run variance, 𝜂𝜂 is the volatility of volatility. 

𝐵𝐵𝑡𝑡2 is a standard Brownian motion with no drift. In addition, 𝜇𝜇𝐵𝐵𝑡𝑡1 ∙ 𝜇𝜇𝐵𝐵𝑡𝑡2 = 𝜌𝜌𝜇𝜇𝜇𝜇, where 𝜌𝜌 < 0 to 

reflect the leverage effect.  

In a risk-neutral world, the Heston model can be written as: 

𝜇𝜇𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

= 𝑟𝑟𝜇𝜇𝜇𝜇 + �𝑉𝑉𝑡𝑡𝜇𝜇𝐵𝐵𝑡𝑡
1,𝑄𝑄 ,𝐶𝐶𝑙𝑙𝜇𝜇, 

𝜇𝜇𝑉𝑉𝑡𝑡 = [𝜅𝜅(𝜃𝜃 − 𝑉𝑉𝑡𝑡) − 𝛾𝛾𝑉𝑉𝑡𝑡]𝜇𝜇𝜇𝜇 + 𝜂𝜂�𝑉𝑉𝑡𝑡𝜇𝜇𝐵𝐵𝑡𝑡
2,𝑄𝑄 ,    (A.6) 

where 𝛾𝛾 is the price of volatility risk, and 𝛾𝛾 < 0 indicates a negative variance risk premium. 𝐵𝐵𝑡𝑡
1,𝑄𝑄 

and 𝐵𝐵𝑡𝑡
2,𝑄𝑄 are Brownian motions under risk-neutral measure, where 𝜇𝜇𝐵𝐵𝑡𝑡

1,𝑄𝑄 ∙ 𝜇𝜇𝐵𝐵𝑡𝑡
2,𝑄𝑄 = 𝜌𝜌𝜇𝜇𝜇𝜇 and 𝜌𝜌 <

0. We set model parameters to match historical data and Broadie et al. (2007).  We summarize 

them in Table A.15. 

To introduce volatility seasonality, we make the following adjustments: in particular, we 

treat 𝑉𝑉𝑡𝑡 as a hidden conditional variance process with adjustments to adapt to day and night 

variance. The seasonality-adjusted variance, 𝑆𝑆𝑉𝑉𝑡𝑡, is therefore, 

𝑆𝑆𝑉𝑉𝑡𝑡 = �
𝑉𝑉𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜈𝜈𝑑𝑑𝑑𝑑𝑑𝑑𝑉𝑉𝑡𝑡

𝑉𝑉𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 = 𝜈𝜈𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡𝑉𝑉𝑡𝑡

,     (A.7) 

i.e., the implementation is very similar to the BSM model. We scale instantaneous variance up 

during day and down during night.  

𝑉𝑉𝑡𝑡 = 17.25
24

𝑉𝑉𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 + 6.75

24
𝑉𝑉𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑    (A.8) 

𝜆𝜆 = �
𝑉𝑉𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑

𝑉𝑉𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 

= � 𝜈𝜈𝑑𝑑𝑑𝑑𝑑𝑑

𝜈𝜈𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 
 

As with the BSM model, we set volatility 𝑉𝑉 to match historical data and choosing the day-night 

volatility ratio (e.g., 𝜆𝜆 = 2.5), we can then compute 𝜈𝜈𝑑𝑑𝑑𝑑𝑑𝑑 and 𝜈𝜈𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡. 
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We incorporate volatility bias and simulate the model to compute option returns in the 

same way as for the BSM model in the previous section. To compute overnight option returns, we 

first compute the closing option price using “biased” volatility ratio 𝜈𝜈𝑑𝑑𝑑𝑑𝑑𝑑 (𝑉𝑉, 𝜆𝜆𝐼𝐼𝐼𝐼) and 

𝜈𝜈𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡 (𝑉𝑉, 𝜆𝜆𝐼𝐼𝐼𝐼) and then simulate the overnight change in the underlying using Eq. (A.4) with the 

correct volatility ratio 𝜆𝜆, and then compute open option price under 𝜆𝜆𝐼𝐼𝐼𝐼 using the new underlying 

price (time-to-maturity, etc.). We then compute overnight option return from close and open prices 

for option and the underlying using Eq. (1) and (2). 

A.7. Trading Strategy 

Practitioners may wonder whether the day-night bias can be turned into a trading strategy 

by profiting from large overnight returns. The short answer is yes, but only for certain options and 

only for investors who are very careful about their trade execution (e.g., hedge funds specializing 

in both trading options and trade execution). The costs for average investors are too high; however, 

they can still benefit from the day-night effect and reduce costs and risks by executing their option 

sales in the afternoon instead of the morning. Importantly, marginal investors who have low 

execution costs, not average investors, are responsible for arbitraging away such “good deals.”  

At first glance, the option trading costs are excessive. E.g., the effective bid-ask spread for 

S&P 500 index options is about 6% in our sample. Hardly any option trading strategy is profitable 

after accounting for these spreads. Do most investors pay such large spreads? No! Muravyev and 

Pearson (2016, MP henceforth) show that most investors time their trades and pay lower spreads. 

Trade timers pay as much as one fourth of the effective bid-ask spread when taking liquidity. Of 

course, investors can also reduce costs by providing liquidity with limit orders. We focus on the 

bid-ask spread as it is typically much larger than other option costs, such as hedging costs in the 
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underlying, brokerage/exchange commissions, margin/funding costs, execution uncertainty, and 

price impact; however,  these costs should be accounted for in a more thorough analysis. 

For the trading strategy, we focus on options on SPDR S&P 500 ETF (ticker SPY), the 

world’s most liquid ETF, that are a close substitute for S&P index options but incur much lower 

transaction costs. Next, we compute trading cost measures introduced by MP (2016). That is, using 

the option trade data, we compute the effective bid-ask spread adjusted for the fact that many 

investors time their trades to reduce transaction costs. Following MP (2016), each trade is assigned 

the likelihood of being initiated by an execution timing algorithm, which allows us to compute 

trading costs for two investor types: execution algorithms (“algos,” those concerned with trading 

costs and time their trades accordingly) and everybody else (“non-algos,” which represents an 

average investor).  

In Table A.20, we compare overnight returns and trading costs for SPY options. Results 

are reported for two subperiods: before and after the Penny Pilot reform that reduced the tick size 

for SPY options to one penny on September 28, 2007. SPY options were launched in January 2005. 

An average night return for SPY options is -0.64% (an intraday return is 0.18%), and is identical 

before and after the Penny Pilot. However, trading costs decreased substantially after the tick size 

reduction. The costs for non-algos, which are equal to the conventional effective bid-ask spread, 

decreased from 3.9% to 1.2%. Algo-traders’ costs declined from 0.66% to 0.05%. Thus, a 

hypothetical trading strategy that sells SPY options overnight and incurs transaction costs typical 

for an algo-trader breaks even in the pre-Pilot period (-0.01% = 0.65% - 0.66%) and is highly 

profitable in the post-Pilot period (0.6% per day), as the profits do not change while the costs 

decrease noticeably. We use the transaction costs for algo-traders because they are the marginal 

investors in this high-cost market. Other investors’ costs are too high to profit from this strategy. 
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Overall, option trading costs fell after the Penny Pilot, thus making the overnight strategy 

potentially profitable for algo-traders, but only for them. Of course, the debate about after-cost 

profitability of the overnight strategy does not answer a more fundamental question about why this 

effect exists in the first place.  
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Figure A.1 Intraday option returns and delta-hedging frequency.  

We report how average intraday returns for S&P500 index options depend on the frequency of delta-

hedging from one time per day to five times, which is our baseline case. We also report 95% confidence 

intervals.  
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Figure A.2 Day and night volatility for individual stocks 

We first compute the day-night volatility ratio for each stock and then plot the distribution quantiles on 

each month. We report 10%, 25%, 50%, 75%, and 90% quantiles and the mean, which is close to the 

median. Overnight (intraday) volatility is computed as an average of the square root of the sum of squared 

close-to-open (open-to-close) returns over the previous 60 days. Both volatilities are then scaled to per-

hour basis to make them comparable before computing their simple ratio.  
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Figure A.3 Day and night option returns in the Black-Scholes-Merton model  
 
We study how day and night option returns depend on the volatility bias in the BSM model. We show 

average option returns for different levels of the day-night volatility ratio (𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡� =

 1.6, 2.5, 3.3, 4.1), covering plausible values in the data. Each graph shows how day and night returns 

depend on the degree to which option prices underreact to day-night volatility seasonality. While the 

actual seasonality is  𝜆𝜆 = 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡� , option prices are set assuming a different ratio 𝜆𝜆𝐼𝐼𝐼𝐼 =

𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡𝐼𝐼𝐼𝐼� . In Full Bias case 𝜆𝜆𝐼𝐼𝐼𝐼 = 1, option prices completely ignore volatility seasonality and 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼 =

𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡𝐼𝐼𝐼𝐼 = 𝜎𝜎𝐼𝐼𝐼𝐼. In “No Bias” case, option prices are set using the correct volatility ratio 𝜆𝜆𝐼𝐼𝐼𝐼 = 𝜆𝜆 . 

 
 

 
 

 
 



Table A.1 Summary statistics for day and night returns for S&P500 index and individual stocks  

Returns and variances are not annualized and not adjusted for the difference in length between 

intraday and overnight periods. 

 
Panel A. S&P500 index returns  
 

 Mean Std. Dev. Skewness Ex. Kurt. 5% 50% 95% 

Intraday 0.00% 0.009 -0.264 14.375 -1.35% 0.05% 1.14% 

Overnight 0.01% 0.006 -0.055 18.970 -0.92% 0.03% 0.81% 
 
 
Panel B. Equity returns  

 
 Mean Std. Dev. Skewness Ex. Kurt. 5% 50% 95% 

Intraday 0.00% 0.031 0.569 20.314 -4.25% -0.05% 4.35% 

Overnight 0.06% 0.021 1.616 61.836 -2.55% 0.02% 2.77% 
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Table A.2 Option returns by year.  
 
Panel A. Returns for equity options 
 

  Average Returns, %     T-statistics 
Year Intraday Subperiod Night Diff.  Day Night Diff. 

  1st 2nd 3rd 4th 5th Total Total Day - 
Night   Total Total Day - Night 

2004 0.08 -0.02 -0.05 0.02 0.10 0.13 -0.30 0.43  1.7 -10.7 5.4 
2005 0.10 -0.02 -0.03 0.01 0.10 0.17 -0.34 0.51  2.4 -13.2 7.0 
2006 0.16 -0.03 -0.01 0.00 0.05 0.18 -0.50 0.68  2.5 -20.4 9.5 
2007 0.23 0.03 0.04 0.03 0.14 0.47 -0.50 0.97  3.8 -11.0 8.0 
2008 0.23 0.10 0.03 0.09 0.15 0.60 -0.35 0.97  3.2 -3.5 5.2 
2009 0.04 -0.07 -0.05 -0.10 0.02 -0.16 -0.49 0.30  -1.5 -8.2 2.1 
2010 0.05 -0.05 -0.11 -0.03 0.05 -0.08 -0.47 0.39  -0.6 -6.1 2.5 
2011 0.08 -0.02 -0.03 0.06 0.06 0.15 -0.48 0.63  0.9 -5.3 3.3 
2012 0.08 -0.07 -0.10 0.00 -0.02 -0.11 -0.45 0.35  -1.2 -7.3 3.0 
2013 0.12 -0.04 -0.07 0.00 0.10 0.11 -0.50 0.61   0.5 -4.7 2.3 
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Panel B. Returns for major ETF options. 

The returns are based on average returns for three ETF options: S&P 500 (SPY), NASDAQ 100 (QQQ), and Russell 2000 (IWM). These three 

ETFs have the most active trading in options. Intraday returns are positive in all years except for -0.17% in 2004 and -0.05% in 2012.  

 
  Average Returns, %     T-statistics 

Year Intraday Subperiod Night Diff.  Day Night Diff. 

  1st 2nd 3rd 4th 5th Total Total Day - 
Night   Total Total Day - Night 

2004 -0.11 -0.06 -0.09 0.01 0.09 -0.17 -0.51 0.33  -1.8 -10.9 3.2 
2005 -0.02 -0.05 -0.06 0.02 0.14 0.03 -0.52 0.55  0.3 -12.5 4.5 
2006 0.12 -0.07 0.04 0.05 0.02 0.16 -0.48 0.63  1.3 -9.8 5.0 
2007 0.03 -0.01 0.10 0.13 0.12 0.37 -0.44 0.83  2.4 -4.6 4.7 
2008 0.01 0.03 0.07 0.18 0.18 0.47 -0.27 0.78  2.6 -2.2 3.8 
2009 0.09 0.04 -0.04 -0.10 0.02 0.01 -0.52 0.50  0.1 -7.1 3.2 
2010 0.06 -0.01 -0.05 0.04 0.11 0.14 -0.54 0.67  0.9 -4.9 3.2 
2011 0.06 0.08 -0.01 0.11 0.06 0.30 -0.47 0.77  1.8 -3.7 3.6 
2012 0.08 -0.03 -0.07 0.04 -0.06 -0.05 -0.52 0.47  -0.5 -5.3 3.2 
2013 0.28 -0.10 -0.12 -0.02 0.11 0.16 -0.76 0.93  0.6 -5.0 2.5 
Total 0.04 -0.01 -0.02 0.05 0.08 0.14 -0.48 0.63   3.1 -16.3 11.3 
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Table A.3 Leverage-adjusted returns for S&P 500 index options by moneyness and time-to-expiration 

Option delta hedged returns are adjusted for implied leverage as described at the end of Section 3. Moneyness is measured as absolute option delta. 

Maturity is measured as trading days before expiration. Returns are in percentage points per day(e.g., 0.73%) daily return for short term index 

options intraday. The t-statistics (right panel) are computed using the Newey-West (1987) adjustment. 

 

Moneyness (|∆|) and 
Maturity (Days) 

Average Returns, %  T-statistics 

4-15 16-53 54-118 119-252 253+  4-15 16-53 54-118 119-252 253+ 

Intraday:            

0.1 < |∆| < 0.25 0.023 0.015 0.007 0.013 0.031  2.0 1.6 0.8 1.3 2.4 

0.25 < |∆| < 0.5 0.025 0.014 0.013 0.019 0.025  3.3 2.4 2.2 2.8 2.9 

0.5 < |∆| < 0.75 0.015 0.010 0.008 0.009 0.014  3.5 2.7 2.0 2.0 2.3 

0.75 < |∆|  < 0.9 0.006 0.003 0.002 0.007 0.014  2.5 1.5 0.9 1.6 2.0 

Overnight:            

0.1 < |∆| < 0.25 -0.102 -0.057 -0.041 -0.042 -0.053  -13.5 -9.4 -7.4 -7.3 -5.8 

0.25 < |∆| < 0.5 -0.063 -0.042 -0.033 -0.033 -0.030  -12.7 -10.2 -9.5 -8.9 -5.9 

0.5 < |∆| < 0.75 -0.038 -0.026 -0.022 -0.022 -0.023  -13.2 -11.5 -8.6 -7.4 -6.0 

0.75 < |∆|  < 0.9 -0.018 -0.015 -0.010 -0.006 -0.014  -10.3 -9.9 -3.6 -1.3 -1.6 
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Table A.4 Option returns by time-to-expiration 

Maturity is measured as the number of trading days before expiration. Each trading day is divided into five equal subperiods. “Total” column for 

intraday returns reports the cumulative sum of subperiod returns. Returns are in percentage points per day (e.g., a 0.73%) daily return for short-

term index options intraday. The t-statistics (right panel) are computed using the Newey-West (1987) adjustment for heteroscedasticity and 

autocorrelation. 

  Average Returns, %   T-statistics 

Maturity, 
Days Intraday Subperiod Overnight  Intraday Overnight 

  1st 2nd 3rd 4th 5th Total Total   1st 2nd 3rd 4th 5th Total Total 

S&P Options 

4-15  0.01 0.01 -0.11 0.36 0.41 0.73 -2.62  0.1 0.1 -1.7 4.4 3.4 3.1 -15.6 
16-53  -0.07 -0.05 -0.01 0.17 0.24 0.29 -1.00  -1.1 -1.1 -0.2 4.2 4.1 2.4 -12.1 
54-118  -0.03 0.00 -0.01 0.10 0.10 0.16 -0.47  -0.7 0.1 -0.5 3.5 2.1 1.8 -8.7 

119-252  0.02 0.02 0.01 0.07 0.08 0.16 -0.29  0.5 0.9 0.5 2.9 2.4 2.6 -8.4 
253+  0.02 0.04 0.02 0.05 0.08 0.21 -0.22   0.6 1.5 0.8 2.0 2.3 3.1 -6.5 

Equity Options 

4-15  0.24 -0.04 -0.13 -0.04 0.00 0.04 -1.01  7.9 -1.7 -7.8 -2.0 0.1 0.5 -18.5 
16-53  0.15 -0.02 -0.05 0.01 0.07 0.17 -0.51  9.4 -1.5 -6.1 0.8 6.7 4.2 -20.4 
54-118  0.09 0.00 -0.01 0.02 0.07 0.18 -0.21  7.4 0.3 -1.6 2.2 7.1 5.6 -11.5 

119-252  0.06 0.00 -0.01 0.02 0.06 0.13 -0.09  5.0 0.2 -1.3 2.4 6.3 4.6 -5.8 
253+  0.07 0.02 0.00 0.01 0.03 0.13 -0.05   5.7 1.8 -0.2 1.3 3.1 4.8 -3.2 
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Table A.5 S&P 500 index option returns double-sorted by (normalized) option Theta and Vega 

This table reports intraday and overnight option returns of portfolios double sorted by option Theta and Vega. Theta is computed as 𝜕𝜕𝐶𝐶 𝜕𝜕𝜇𝜇⁄ , and 

Vega is computed as 𝜕𝜕𝐶𝐶 𝜕𝜕𝜎𝜎⁄ , where 𝐶𝐶 is the option price. Theta and Vega of each option are measured at the start of each period. We then 

independently sort options into 4 groups by Theta and Vega, with 16 portfolios in total. Option returns are reported in percentage points per day. 

The t-statistics (right panel) are computed using the Newey-West (1987) adjustment. 

Double-sorted by  
Theta and Vega 

Average Returns, %   T-statistics 

𝑉𝑉𝑒𝑒𝑉𝑉𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 𝑉𝑉𝑒𝑒𝑉𝑉𝐶𝐶2 𝑉𝑉𝑒𝑒𝑉𝑉𝐶𝐶3 𝑉𝑉𝑒𝑒𝑉𝑉𝐶𝐶𝐻𝐻𝑛𝑛𝑛𝑛ℎ 𝑉𝑉𝑒𝑒𝑉𝑉𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴   𝑉𝑉𝑒𝑒𝑉𝑉𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 𝑉𝑉𝑒𝑒𝑉𝑉𝐶𝐶2 𝑉𝑉𝑒𝑒𝑉𝑉𝐶𝐶3 𝑉𝑉𝑒𝑒𝑉𝑉𝐶𝐶𝐻𝐻𝑛𝑛𝑛𝑛ℎ 𝑉𝑉𝑒𝑒𝑉𝑉𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 

Intraday:            

𝑇𝑇ℎ𝑒𝑒𝜇𝜇𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 0.25 0.39 0.35 0.41 0.38  2.4 2.9 2.1 2.0 2.2 

𝑇𝑇ℎ𝑒𝑒𝜇𝜇𝐶𝐶2 0.17 0.20 0.14 0.15 0.15  3.4 2.7 1.4 1.2 1.7 

𝑇𝑇ℎ𝑒𝑒𝜇𝜇𝐶𝐶3 0.07 0.14 0.11 0.17 0.11  1.9 2.5 1.6 1.7 2.0 

𝑇𝑇ℎ𝑒𝑒𝜇𝜇𝐶𝐶𝐻𝐻𝑛𝑛𝑛𝑛ℎ 0.03 0.09 0.14 0.15 0.09  1.4 2.5 2.8 1.5 2.4 

𝑇𝑇ℎ𝑒𝑒𝜇𝜇𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 0.09 0.16 0.19 0.30 0.18  2.3 2.7 2.0 1.9 2.1 

Overnight:            

𝑇𝑇ℎ𝑒𝑒𝜇𝜇𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 -1.11 -1.70 -1.90 -2.04 -1.92  -13.2 -16.1 -17.0 -15.0 -16.2 

𝑇𝑇ℎ𝑒𝑒𝜇𝜇𝐶𝐶2 -0.63 -0.72 -0.74 -0.74 -0.74  -15.1 -15.1 -12.4 -8.8 -12.8 

𝑇𝑇ℎ𝑒𝑒𝜇𝜇𝐶𝐶3 -0.34 -0.36 -0.39 -0.37 -0.38  -13.6 -10.9 -9.2 -5.6 -10.5 

𝑇𝑇ℎ𝑒𝑒𝜇𝜇𝐶𝐶𝐻𝐻𝑛𝑛𝑛𝑛ℎ -0.12 -0.17 -0.24 -0.30 -0.17  -6.6 -7.9 -8.0 -3.7 -7.7 

𝑇𝑇ℎ𝑒𝑒𝜇𝜇𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 -0.46 -0.63 -0.96 -1.53 -0.92  -14.3 -10.9 -14.5 -14.5 -14.3 
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Table A.6 Volatility and equity risk cannot explain day-night option returns   

The table reports a time series regression of S&P 5000 delta hedged index option returns on the index returns (Panel A) and VIX futures returns 

(Panel B). Index and VIX futures returns are computed over exactly the same period as option returns (e.g., open-to-close for intraday). We report 

results separately for intraday and overnight returns. VIX futures returns are computed at the same open and close times as for index options. 

Returns are in percentage points per day (e.g., the intercept of “0.18” means an 0.18% daily abnormal alpha). T-statistics are computed using the 

Newey-West (1987) adjustment for heteroscedasticity and autocorrelation. 

 

Panel A: 𝑂𝑂𝑂𝑂𝜇𝜇𝑂𝑂𝑒𝑒𝜇𝜇𝑡𝑡 = 𝐶𝐶 + 𝑏𝑏 ∗ 𝑂𝑂𝑒𝑒𝜇𝜇𝑡𝑡 + 𝜖𝜖𝑡𝑡 
 Intraday  Overnight 
  a b   a b 
Coeff. 0.18 -2.07  -0.99 -3.33 
T-stat. 2.1 -10.2   -18.4 -10.4 

 
 

Panel B: 𝑂𝑂𝑂𝑂𝜇𝜇𝑂𝑂𝑒𝑒𝜇𝜇𝑡𝑡 = 𝐶𝐶 + 𝑏𝑏 ∗ 𝑂𝑂𝑒𝑒𝜇𝜇𝑡𝑡 + 𝑐𝑐 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃𝜇𝜇𝑂𝑂𝑒𝑒𝜇𝜇𝑡𝑡 + 𝜖𝜖𝑡𝑡 
 Intraday  Overnight 
  a b c   a b c 
Coeff. 0.24 0.08 0.92  -0.89 -1.63 0.66 
T-stat. 3.2 0.5 17.3   -12.8 -2.6 5.6 
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Table A.7 Unhedged returns and straddle returns for S&P 500 index options  

We explore the robustness of our main result by computing option returns in two alternative ways that do not require delta-hedging in the 

underlying. Panel A reports returns for a straddle portfolio that includes a call and as many corresponding puts (with the same strike and 

expiration) requisite to make it delta-neutral. On average, a straddle portfolio has one call and one put. Panel B reports raw option returns (i.e., 

returns are computed the same way as in the baseline case except no delta-hedging is done). Returns are in percentage points per day (e.g., “0.18” 

means an 0.18% daily return). Intraday period is divided into five equally long subperiods.  

Panel A Straddle returns 
 

  Return Average, %   T-statistics 
 Intraday Subperiods Overnight  Intraday Subperiods Overnight 
  1st 2nd 3rd 4th 5th Total Total   1st 2nd 3rd 4th 5th Total Total 

All Deltas -0.03 -0.02 -0.02 0.11 0.14 0.18 -0.85  -0.9 -0.9 -0.8 4.3 3.9 2.5 -17.7 
0.1 < |∆| < 0.25 0.03 -0.01 -0.04 0.15 0.13 0.26 -1.00  0.5 -0.2 -1.2 3.9 2.8 2.7 -14.1 
0.25 < |∆| < 0.5 0.03 0.00 -0.02 0.13 0.16 0.30 -0.91  0.7 0.0 -0.7 4.7 4.0 3.9 -16.5 
0.5 < |∆| < 0.75 -0.01 -0.02 0.00 0.10 0.11 0.19 -0.73  -0.2 -0.8 -0.1 4.5 4.0 3.1 -17.0 
0.75 < |∆|  < 0.9 -0.10 -0.04 -0.02 0.12 0.13 0.09 -0.89   -3.0 -1.5 -0.8 4.3 3.8 1.2 -16.6 

 
 
Panel B Unhedged returns 
 

 Return Average, %   T-statistics  

 Intraday Subperiods Overnight  Intraday Subperiods Overnight 
  1st 2nd 3rd 4th 5th Total Total   1st 2nd 3rd 4th 5th Total Total 

All -0.04 -0.03 -0.02 0.14 0.16 0.22 -0.93  -0.8 -0.8 -0.7 4.1 3.6 2.3 -12.1 
Puts 0.13 0.05 -0.10 0.15 0.00 0.31 -1.16  0.8 0.4 -1.0 1.1 0.0 0.9 -4.6 
Calls -0.17 -0.07 0.07 0.18 0.32 0.39 -0.63   -1.2 -0.6 0.7 1.5 2.0 1.3 -3.1 
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Table A.8 Trade price as an alternative to the option quote midpoint 

Panel A compares trade price with a quote midpoint at the time of the trade for S&P500 index options. For all option trades in a given sup-period 

and day, we compute the average dollar difference (𝑇𝑇𝑃𝑃𝑛𝑛 −𝑀𝑀𝑀𝑀𝜇𝜇𝑛𝑛) and relative difference (𝑇𝑇𝑃𝑃𝑛𝑛 − 𝑀𝑀𝑀𝑀𝜇𝜇𝑛𝑛)/𝑀𝑀𝑀𝑀𝜇𝜇𝑛𝑛  between trade price and quote 

midpoint. We then compute the average across days. (“0.0024” means 0.24 cents.) Panel B reports day and night option returns computed from 

trade prices. For a set of options that trade around both open and close, we compute option delta hedged returns the same way as for the quote 

midpoints (i.e., delta-hedging, etc.).  

Panel A Average difference between option trade prices and the quote midpoints 
 

  Intraday Subperiod  
  1st 2nd 3rd 4th 5th Overall 
       

Dollar Difference, $ 0.0024 0.0032 0.0067 0.0088 0.0099 0.0063 
Relative Difference, % 0.07 0.07 0.08 0.10 0.12 0.09 

 
 

Panel B Day and night option returns computed from option trade prices 
 

    Return Average, %   T-statistics 
  Intraday Overnight  Intraday Overnight 

    Total Total Exclude 
Weekends   Total Total Exclude 

Weekends          
All All Deltas 0.44 -2.26 -1.82  2.8 -17.8 -14.0 

 0.1 < |∆| < 0.25 0.62 -3.84 -3.10  2.3 -18.7 -14.7 
 0.25 < |∆| < 0.5 0.43 -1.98 -1.67  3.2 -18.7 -15.5 
 0.5 < |∆| < 0.75 0.32 -0.69 -0.45  4.0 -9.8 -6.1 
  0.75 < |∆|  < 0.9 0.27 -0.03 0.06   3.8 -0.3 0.4 

Puts All Deltas 0.40 -2.32 -1.96  2.6 -17.2 -14.1 
Calls All Deltas 0.48 -2.41 -1.83   2.7 -14.7 -10.7 
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Table A.9 S&P 500 index option returns using alternative open and close option prices 

This table reports intraday- and overnight-option returns using alternative definitions of open and close option prices. In particular, we compute 

option returns using (i) a 10 a.m. quote midpoint as the open price, (ii) a 4 p.m. quote midpoint as the close price (index options close at 4:15p.m.); 

we then (iii) compute returns using only option bid prices and (iv) using only ask prices. The t-statistics (right panel) are computed using the 

Newey-West (1987) adjustment for heteroscedasticity and autocorrelation. 

 
 Option Returns  T-statistics 
Option Price Intraday Overnight   Intraday Overnight 

Open at 10am 0.29% -1.17%  3.4 -16.7 
Close at 4pm 0.20% -1.08%  2.3 -16.1 
Option Bid 0.27% -1.08%  2.9 -14.2 
Option Ask 0.22% -0.96%   2.4 -13.5 
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Table A.10 VIX futures day and night returns  

Maturity is measured in trading days to expiration. First, we compute average return for all futures in a given maturity bin on a given day and then 

the average return across days. Returns are computed using the quote midpoints and are reported in percentage points per day (e.g., “0.11” means a 

0.11% daily return). VIX futures returns are computed at the same open and close times as for index options. Intraday period is divided 

into five equally long subperiods. An overnight period is from 4:15 pm to 9:30 am. to match the options results. The t-statistics (right panel) are 

computed using the Newey-West (1987) adjustment. 

 

 
Maturity, 

days 
 

Return Average, %  T-statistics 

Intraday Subperiods Overnight  
 

Intraday Subperiods Overnight 

1st 2nd 3rd 4th 5th Total Total  1st 2nd 3rd 4th 5th Total Total 

Front-
month 0.06 0.03 0.00 0.01 -0.10 0.01 -0.15  1.3 1.0 0.0 0.3 -2.7 0.1 -2.6 

                
4-15 0.11 -0.02 0.05 0.01 -0.10 0.04 -0.20  1.7 -0.5 1.1 0.3 -1.9 0.4 -2.4 

16-53 0.03 0.03 -0.01 0.02 -0.01 0.06 -0.15  0.8 1.0 -0.2 1.0 -0.5 1.0 -3.3 
54-118 0.00 0.03 0.01 0.03 0.02 0.08 -0.09  -0.2 1.6 0.4 1.7 1.0 2.0 -2.7 

119-252 -0.05 0.00 0.00 0.02 0.05 0.02 0.04  -2.1 0.3 0.0 1.4 1.6 0.5 0.9 
253+ -0.02 0.00 0.01 0.00 -0.01 -0.02 -0.03  -1.6 -0.5 0.6 0.2 -1.2 -1.1 -1.9 
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Table A.11 Panel A Portfolio sorts for S&P 500 index option returns 

Time series of S&P index option returns for overnight and intraday periods are sorted into four equally weighted portfolios. Option liquidity is 

measured as the option effective bid-ask spread. The AAII Investor Sentiment Survey measures the percentage of individual investors who are 

bullish, bearish, and neutral on the stock market. “BW Sentiment” is the Baker and Wurgler (2006) index of investor sentiment.  

VIX 
Index Intraday Overnight Diff t-stat  LIBOR  Intraday Overnight Diff t-stat  TED 

Spread Intraday Overnight Diff t-stat 

Low, 1 -0.28 -0.86 0.58 4.9  Low, 1 0.12 -1.26 1.38 6.3  Low, 1 0.20 -1.26 1.46 6.8 
2 -0.02 -1.03 1.02 5.3  2 0.05 -0.98 1.03 4.4  2 0.01 -0.93 0.94 4.2 
3 0.08 -1.07 1.15 5.0  3 0.25 -0.94 1.18 5.0  3 0.17 -1.01 1.18 6.3 
High, 4 0.97 -1.14 2.12 6.9  High, 4 0.33 -0.91 1.24 6.2  High, 4 0.42 -0.93 1.34 4.9 
H - L -1.26 0.28    H - L -0.21 -0.36    H - L -0.22 -0.34   
t-stat -5.3 1.2    t-stat -0.9 -2.2    t-stat -0.8 -1.5   

                 
Option 
Liquidity Intraday Overnight Diff t-stat  AAII 

Sentiment Intraday Overnight Diff t-stat  BW 
Sentiment Intraday Overnight Diff t-stat 

Low, 1 -0.01 -1.05 1.05 6.0  Low, 1 0.66 -1.13 1.79 6.7  Low, 1 0.08 -1.23 1.30 6.6 
2 0.04 -1.04 1.08 6.5  2 0.02 -1.04 1.06 4.8  2 -0.27 -0.96 0.69 3.2 
3 0.15 -1.07 1.22 6.1  3 0.20 -1.12 1.32 6.1  3 0.21 -1.09 1.30 6.8 
High, 4 0.57 -0.94 1.51 4.8  High, 4 -0.14 -0.82 0.69 3.9  High, 4 0.70 -0.68 1.38 4.1 
H - L -0.58 -0.11    H - L 0.80 -0.30    H - L -0.62 -0.54   
t-stat -2.1 -0.5    t-stat 3.4 -1.4    t-stat -2.1 -2.1   
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Table A.11 Panel B Portfolio sorts for S&P 500 index option returns based on tail risk measures 

Time series of S&P index option returns for overnight and intraday periods are sorted into four equally weighted portfolios based on measures of 

tail risk. KJ is the tail risk measure proposed by Kelly and Jiang (2014). DK is the jump tail risk measure introduced by Du and Kapadia (2012). The 

t-statistics are computed using the Newey-West (1987) adjustment for heteroscedasticity and autocorrelation. 

 
KJ 

Measure Intraday Overnight Diff t-stat  DK 
Measure Intraday Overnight Diff t-stat 

Low, 1 -0.07 -1.13 1.06 5.4  Low, 1 0.18 -0.91 1.09 6.5 
2 0.51 -0.75 1.26 4.9  2 0.22 -1.02 1.23 6.0 
3 0.24 -1.00 1.24 5.8  3 0.25 -0.91 1.16 4.5 
High, 4 0.07 -1.23 1.30 6.0  High, 4 0.13 -1.10 1.24 4.2 
H - L 0.13 -0.11    H - L -0.04 -0.19   
t-stat 0.6 -0.6    t-stat -0.2 -0.8   
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Table A.12 Time series predictability for S&P500 options  

Time series of day and night returns for S&P 500 index options and their difference are regressed on 

controls from the previous day, including day-night volatility ratio, absolute stock return as a proxy for 

realized volatility, option bid-ask spread, implied volatility, volatility skew, variance risk-premium, 

implied volatility spread between calls and puts, and option order imbalance computed from open-close 

and intraday data. Each regression is based on 2298 daily return observations. The t-statistics in 

parentheses are computed using Newey-West (1987).  
 

  𝑂𝑂𝑂𝑂𝜇𝜇𝑂𝑂𝑒𝑒𝜇𝜇𝑃𝑃𝑟𝑟𝑙𝑙𝑡𝑡+1 , % 

  Day Night Day -
Night 

𝑉𝑉𝑙𝑙𝜇𝜇𝑒𝑒𝑟𝑟𝑐𝑐𝑒𝑒𝑂𝑂𝜇𝜇 -0.508 -1.203 0.682 
 (-1.00) (-2.16) (0.86) 

𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡⁄  0.137 0.090 0.049 
 (0.80) (0.68) (0.22) 

𝐴𝐴𝑏𝑏𝐴𝐴𝑆𝑆𝜇𝜇𝐴𝐴𝑂𝑂𝑒𝑒𝜇𝜇𝑡𝑡 3.003 -1.253 4.271 
 (1.14) (-0.47) (1.02) 

𝑂𝑂𝑂𝑂𝜇𝜇𝐵𝐵𝑀𝑀𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑂𝑂𝑟𝑟𝑒𝑒𝐶𝐶𝜇𝜇𝑡𝑡   -1.609 -0.103 -1.506 
 (-0.24) (-0.02) (-0.18) 

𝑉𝑉𝐼𝐼𝑂𝑂𝐶𝐶𝑀𝑀𝑒𝑒𝜇𝜇 𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝜇𝜇𝑀𝑀𝐶𝐶𝑀𝑀𝜇𝜇𝑦𝑦𝑡𝑡 -16.539 3.327 -19.875 
 (-1.09) (0.23) (-0.86) 

𝑉𝑉𝑉𝑉 𝑆𝑆𝐴𝐴𝑒𝑒𝑤𝑤𝑡𝑡 -1.175 12.791 -14.142 
 (-0.13) (1.08) (-0.87) 

𝑉𝑉𝐶𝐶𝑟𝑟𝑂𝑂𝑀𝑀𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟𝑒𝑒𝐼𝐼𝑡𝑡 2.577 -1.073 3.671 
 (0.99) (-0.40) (0.88) 

𝑉𝑉𝑉𝑉 𝑆𝑆𝑂𝑂𝑟𝑟𝑒𝑒𝐶𝐶𝜇𝜇𝑡𝑡 -2.151 -17.147 14.894 
 (-0.30) (-2.42) (1.46) 

𝑂𝑂𝑉𝑉𝐼𝐼𝑏𝑏_𝑂𝑂𝑂𝑂𝑒𝑒𝑙𝑙𝐶𝐶𝐶𝐶𝑉𝑉𝐴𝐴𝑒𝑒𝑡𝑡 5.646 -0.963 6.62 
 (2.11) (-0.49) (1.99) 

𝑂𝑂𝑉𝑉𝐼𝐼𝑏𝑏_𝑉𝑉𝑙𝑙𝜇𝜇𝑟𝑟𝐶𝐶𝜇𝜇𝐶𝐶𝑦𝑦𝑡𝑡 1.365 -2.948 4.313 
 (0.70) (-2.31) (1.89) 

𝑂𝑂2, % 0.85 2.71 2.31 
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Table A.13 Intraday volatility seasonality test 

Panel A. Intraday seasonality in equity option returns. The table reports Fama-MacBeth regressions 

for equity option returns for three intraday subperiods (morning, noon, and afternoon) on just the 

intercept, which corresponds to average option return for a given subperiod (i.e., 0.139% return per day). 

The last two columns show the difference between intraday returns. 

  Morning Mid-day Afternoon 
 Morn.-

Midday 
After.-
Midday 

Intercept 0.139 -0.041 0.059  0.181 0.1 
  (6.89) (-3.63) (3.91)  (10.11) (7.56) 

Panel B. Intraday seasonality in equity volatility. The table reports Fama-MacBeth regressions of the 

volatility ratio between intraday subperiods on the intercept. I.e., afternoon volatility is 20% higher than 

mid-day volatility, hence a 1.20 coefficient.  

   𝜎𝜎𝑚𝑚𝐿𝐿𝑟𝑟𝑛𝑛/𝜎𝜎𝑚𝑚𝑛𝑛𝑑𝑑 𝜎𝜎𝑑𝑑𝑓𝑓𝑡𝑡𝑒𝑒𝑟𝑟𝑛𝑛/𝜎𝜎𝑚𝑚𝑛𝑛𝑑𝑑 
Intercept 1.78 1.20 
  (10.11) (7.56) 

 

Panel C. The main test. Can intraday volatility seasonality explain variation in intraday option returns 

across stocks? Similarly to the day-night test in Table 8, option returns in a particular intraday subperiod 

(e.g., morning and noon) or their difference is regressed on the corresponding volatility ratio (e.g., 

morning vol. to noon vol.). Volatility ratios are estimated out-of-sample based on subperiod stock returns 

over the preceding 60 days. The fourth and last columns add several controls.  

 Morn. Mid-
day 

Morn.-
Mid. 

Morn.-
Mid. 

Mid-
day After. After.-

Mid. 
After.-
Mid. 

Intercept 0.015 -0.018 0.034 0.016 -0.017 -0.027 -0.01 -0.036 
 (0.53) (-1.20) (1.16) (0.50) (-1.37) (-1.83) (-0.62) (-1.69) 

𝜎𝜎𝑚𝑚𝐿𝐿𝑟𝑟𝑛𝑛/𝜎𝜎𝑚𝑚𝑛𝑛𝑑𝑑 0.07 -0.013 0.083 0.082     
 (6.57) (-2.57) (7.27) (7.36)     

𝜎𝜎𝑑𝑑𝑓𝑓𝑡𝑡𝑒𝑒𝑟𝑟𝑛𝑛/𝜎𝜎𝑚𝑚𝑛𝑛𝑑𝑑     -0.02 0.069 0.089 0.086 
     (-2.51) (6.48) (6.81) (6.81) 

Controls - - - + - - - + 
𝐴𝐴𝜇𝜇𝐴𝐴.𝑂𝑂2 (%) 0.12 0.09 0.13 1.63 0.15 0.25 0.22 1.48 
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Table A.14 Day-night cross-stock test for the subsample of stocks with low option volume  

In this table, we conduct a cross-sectional test for the day-night volatility in Table 8 for the subsample 

with little option trading volume. Specifically, we consider 30% of optionable stocks with the lowest 

option trading volume, thus option price pressure is economically small in this sample. The results are 

very similar to the full sample test in Table 8. The first two columns report separate Fama-MacBeth 

regressions for day-night option returns on just the intercept. Trying to explain these intercepts/returns, 

return regressions in the next two columns control for just the day-night volatility ratio. For the volatility 

ratio, we first compute intraday (overnight) volatility from open-to-close (close-to-open) stock returns 

from the preceding 60 days, annualize both volatilities, and then compute their ratio. The last two 

columns add several controls, including absolute stock return, option bid-ask spread, option volume, 

option implied volatility, volatility skew, option volume, variance risk premium, and implied volatility 

spread between calls and puts. Returns are in percentage points per day (e.g., 0.16 is 0.16% per day). T-

statistics in brackets are computed using the Newey-West (1987) adjustment.  

 
 𝑂𝑂𝑂𝑂𝜇𝜇𝑀𝑀𝑉𝑉𝑙𝑙 𝑂𝑂𝑒𝑒𝜇𝜇𝑃𝑃𝑟𝑟𝑙𝑙𝑡𝑡+1, %  
  Day Night Day Night Day Night 

Intercept 0.16 -0.62 -0.23 -0.30 -0.05 -0.36 
 (2.4) (-18.9) (-3.3) (-3.6) (-0.3) (-2.0) 

𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑/𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡   0.13 -0.10 0.18 -0.09 
   (11.9) (-4.5) (3.9) (-4.5) 

Controls - - - - + + 
𝐴𝐴𝜇𝜇𝐴𝐴.𝑂𝑂2, % 0.00 0.00 0.34 0.38 3.60 3.79 
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Table A.15 Parameter choices: data versus model 

Panel A the BSM model. We adjust the standard BSM model to add the day-night volatility seasonality 

and report our main parameter choices in this table. The data moments are computed using sample of 

S&P500 index from January 2004 to December 2013. In the model, 𝜇𝜇 is the instantaneous return 

(annualized) of the underlying asset. 𝑟𝑟𝑓𝑓 is the risk-free rate (annualized). 𝜎𝜎 is the instantaneous volatility 

for the asset price process, scaled to daily level. 𝜎𝜎𝐼𝐼𝐼𝐼 is the implied volatility used to price options. We 

choose 𝜎𝜎𝐼𝐼𝐼𝐼 > 𝜎𝜎 to match the average daily delta hedged option returns on S&P500 index, which is 

approximately -0.7%.  

 Data Model 
𝜇𝜇, annual 5.08% 5.08% 
𝜎𝜎, annual 14.88% 14.88% 
𝑟𝑟𝑓𝑓, annual 1.52% 1.52% 
𝜎𝜎𝐼𝐼𝐼𝐼, annual - 21% 

 
Panel B the Heston model. The panel reports key parameters of the Heston model adjusted for the day-

night volatility seasonality. 𝜇𝜇 is the instantaneous drift of the return process for the underlying. 𝑟𝑟𝑓𝑓 is the 

risk-free rate. For the instantaneous stochastic variance process  𝑉𝑉𝑡𝑡,  𝜅𝜅 is its mean-reverting speed, 𝜃𝜃 is the 

long-run variance, 𝜂𝜂 is the volatility of volatility. 𝛾𝛾 is the price of volatility risk. 𝜌𝜌 is the correlation 

between innovations in asset price and stochastic volatility. Source: 1 – from the data. 2 – parameter 

estimation from Broadie et al. (2007). 3 – based on Broadie et al. (2007), we adjust parameters by 

amplifying with same multiples to get comparable magnitude in our benchmark case. 

 Data Model Source* 
𝜇𝜇 5.08% 5.08% 1 
𝑟𝑟𝑓𝑓 1.52% 1.52% 1 
𝜅𝜅 - 34.27 3 
𝜃𝜃 - 2.21% 1 
𝜂𝜂 - 0.28 2 
𝛾𝛾 - -20.16 3 
𝜌𝜌 - -0.37 2 
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Table A.16 Confirming cross-sectional tests for panel of simulated option returns 

This table reports Fama-MacBeth cross-sectional regressions on a panel of simulated option returns. 

These simulations validate our tests for volatility bias in Table 8. We simulate option returns in the BSM 

model for a cross-section of stocks with the day-night volatility ratio ranging between 1.5 to 5, to match 

the 10% to 90% percentiles of the cross-sectional distribution in the data in Figure A.2. Option prices are 

computed assuming that instantaneous volatility is the same intraday and overnight. Panel A reports 

Fama-MacBeth regression of day and night option returns on the volatility ratio. T-statistics are reported 

in parentheses are large because we can simulate a large panel. The option return is reported in percentage 

points (e.g., -0.11%). Panel B confirms that the absolute value of the coefficients for the day-night 

volatility ratio are not statistically different. These results for simulated returns are remarkably similar to 

the results for actual data in Table 8. 

 

Panel A 

 𝑂𝑂𝑂𝑂𝜇𝜇𝑂𝑂𝑒𝑒𝜇𝜇𝐼𝐼𝑛𝑛𝑡𝑡𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, % 𝑂𝑂𝑂𝑂𝜇𝜇𝑂𝑂𝑒𝑒𝜇𝜇𝑂𝑂𝑂𝑂𝑒𝑒𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡, % 

Constant 0.16 -0.11 -0.90 -0.63 

 
(15.3) (-20.1) (-277.1) (-75.9) 

𝜆𝜆 =  𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡⁄   0.08  -0.08 

 
 (54.1)  (-53.0) 

 
 
Panel B 

𝐻𝐻0: 𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝜆𝜆 = −𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑡𝑡𝜆𝜆  

p-value: 0.82  

Reject or not? Cannot reject 𝐻𝐻0  
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Table A.17 Maturity bias and option returns 

Panel A. Day and night option returns under maturity bias. Panel A reports average intraday and 

overnight option returns simulated from the Heston model with the maturity bias. We first simulate the 

model without the variance risk premium (“no VRP”) to confirm that according to the maturity bias, day 

and night returns offset each other in this case. We then consider the Heston model with variance 

premium and the maturity bias (“with VRP”). We use the same realistic parameter values as in Table 

A.15 to match average daily returns.  

 Option Ret. Day Night 
no VRP 0.57% -0.58% 
with VRP 0.02% -0.82% 

Panel B. Maturity bias and stock volatility. Panel B simulates option returns under the maturity bias 

and without VRP. It then reports average intraday option returns by maturity and moneyness for two 

levels of stock volatility, 𝜎𝜎 = 15%  and 𝜎𝜎 = 30%. According to the maturity bias, day-night option 

returns depend little on the underlying volatility. To save space, we only report intraday returns, as 

overnight returns have the same magnitude but the opposite sign (no VRP). 

𝝈𝝈 = 𝟏𝟏𝟏𝟏%    4-15 
days 

16-53 
days 

54-118 
days 

119-252 
days 

All Deltas   1.89% 0.55% 0.24% 0.07% 
0.1 < |D| < 0.25   4.07% 1.20% 0.54% 0.16% 
0.25 < |D| < 0.5   2.10% 0.63% 0.28% 0.09% 
0.5 < |D| < 0.75   1.02% 0.27% 0.12% 0.04% 
0.75 < |D| < 0.9   0.35% 0.10% 0.05% 0.02% 

 

𝝈𝝈 = 𝟑𝟑𝟑𝟑%    4-15 
days 

16-53 
days 

54-118 
days 

119-252 
days 

All Deltas   1.90% 0.53% 0.22% 0.07% 
0.1 < |D| < 0.25   4.19% 1.19% 0.49% 0.14% 
0.25 < |D| < 0.5   2.19% 0.63% 0.28% 0.08% 
0.5 < |D| < 0.75   0.96% 0.28% 0.13% 0.05% 
0.75 < |D| < 0.9   0.35% 0.11% 0.06% 0.03% 
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Table A.18 Order imbalance summary statistics and correlations 

Order imbalance is the difference between number of buyer and seller-initiated trades normalized by total 

number of trades. We compare trade price to the quote midpoint to determine trade sign in the intraday 

data (OPRA). For the open-close data (ISE for stocks, CBOE for S&P500), the imbalances are computed 

using the cumulative number of buys and sells by non-market-makers. This table reports the average, 

standard deviation, and number of stock-day observations, as well as the correlation table across order 

imbalances.  

Panel A. S&P 500 Index Options 

 Open-Close   Intraday  
  Calls Puts Total  Calls Puts Total 

𝐴𝐴𝐴𝐴𝑒𝑒𝑟𝑟𝐶𝐶𝑉𝑉𝑒𝑒 0.2% 2.0% 1.4%  1.0% 3.4% 2.4% 
𝑆𝑆𝜇𝜇𝜇𝜇.𝐷𝐷𝑒𝑒𝐴𝐴. 5.6% 4.9% 3.6%  7.6% 7.2% 5.5% 
𝑁𝑁.𝑂𝑂𝑏𝑏𝐴𝐴. 2298 2298 2298  2298 2298 2298 

Correlation Table:   
 

   
𝑂𝑂𝑂𝑂𝑒𝑒𝑙𝑙𝐶𝐶𝐶𝐶𝑉𝑉𝐴𝐴𝑒𝑒𝐶𝐶𝑑𝑑𝐴𝐴𝐴𝐴 100% -9% 46%  -2% 1% 0% 
𝑂𝑂𝑂𝑂𝑒𝑒𝑙𝑙𝐶𝐶𝐶𝐶𝑉𝑉𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝑡𝑡 -9% 100% 83%  8% 11% 13% 
𝑂𝑂𝑂𝑂𝑒𝑒𝑙𝑙𝐶𝐶𝐶𝐶𝑉𝑉𝐴𝐴𝑒𝑒𝑇𝑇𝐿𝐿𝑡𝑡𝑑𝑑𝐴𝐴 46% 83% 100%  7% 11% 12% 
𝑉𝑉𝑙𝑙𝜇𝜇𝑟𝑟𝐶𝐶𝜇𝜇𝐶𝐶𝑦𝑦𝐶𝐶𝑑𝑑𝐴𝐴𝐴𝐴 -2% 8% 7%  100% 11% 67% 
𝑉𝑉𝑙𝑙𝜇𝜇𝑟𝑟𝐶𝐶𝜇𝜇𝐶𝐶𝑦𝑦𝑃𝑃𝑃𝑃𝑡𝑡 1% 11% 11%  11% 100% 81% 
𝑉𝑉𝑙𝑙𝜇𝜇𝑟𝑟𝐶𝐶𝜇𝜇𝐶𝐶𝑦𝑦𝑇𝑇𝐿𝐿𝑡𝑡𝑑𝑑𝐴𝐴 0% 13% 12%  67% 81% 100% 

 

Panel B. Equity Options 

 Open-Close  Intraday 
  Calls Puts Total  Calls Puts Total 

𝐴𝐴𝐴𝐴𝑒𝑒𝑟𝑟𝐶𝐶𝑉𝑉𝑒𝑒 -1.5% 0.5% -1.1%  -2.1% -0.6% -2.7% 
𝑆𝑆𝜇𝜇𝜇𝜇.𝐷𝐷𝑒𝑒𝐴𝐴. 31.6% 26.4% 41.3%  34.5% 27.3% 44.7% 
𝑁𝑁.𝑂𝑂𝑏𝑏𝐴𝐴. 2040754 2040754 2040754  2040754 2040754 2040754 

Correlation Table:   
 

   
𝑂𝑂𝑂𝑂𝑒𝑒𝑙𝑙𝐶𝐶𝐶𝐶𝑉𝑉𝐴𝐴𝑒𝑒𝐶𝐶𝑑𝑑𝐴𝐴𝐴𝐴 100% 1% 77%  21% 3% 18% 
𝑂𝑂𝑂𝑂𝑒𝑒𝑙𝑙𝐶𝐶𝐶𝐶𝑉𝑉𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝑡𝑡 1% 100% 64%  3% 25% 17% 
𝑂𝑂𝑂𝑂𝑒𝑒𝑙𝑙𝐶𝐶𝐶𝐶𝑉𝑉𝐴𝐴𝑒𝑒𝑇𝑇𝐿𝐿𝑡𝑡𝑑𝑑𝐴𝐴 77% 64% 100%  18% 18% 25% 
𝑉𝑉𝑙𝑙𝜇𝜇𝑟𝑟𝐶𝐶𝜇𝜇𝐶𝐶𝑦𝑦𝐶𝐶𝑑𝑑𝐴𝐴𝐴𝐴 21% 3% 18%  100% 4% 79% 
𝑉𝑉𝑙𝑙𝜇𝜇𝑟𝑟𝐶𝐶𝜇𝜇𝐶𝐶𝑦𝑦𝑃𝑃𝑃𝑃𝑡𝑡 3% 25% 18%  4% 100% 64% 
𝑉𝑉𝑙𝑙𝜇𝜇𝑟𝑟𝐶𝐶𝜇𝜇𝐶𝐶𝑦𝑦𝑇𝑇𝐿𝐿𝑡𝑡𝑑𝑑𝐴𝐴 18% 17% 25%  79% 64% 100% 
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Table A.19 Order imbalances by year 

The imbalance for each year is computed as an average of daily imbalances. Imbalances are reported in 

percentage points (e.g., 5.68 means 5.68%). Table A.16 describes how imbalances are computed. 

 

Panel A. S&P 500 Index Options 

Year  Intraday    Open-Close  
  Call Put Total   Call Put Total 

2004 5.68 8.51 7.30  0.44 3.22 2.16 
2005 2.79 4.95 4.07  0.96 3.58 2.60 
2006 -1.73 1.10 -0.03  0.41 2.43 1.60 
2007 -1.70 0.14 -0.54  -0.26 2.63 1.67 
2008 -0.77 0.01 -0.29  1.61 1.18 1.29 
2009 0.34 2.20 1.37  0.11 0.71 0.55 
2010 1.40 2.75 2.03  -0.23 1.38 0.88 
2011 -0.32 2.61 1.35  0.19 1.48 1.03 
2012 -0.23 3.68 1.87  -1.00 1.60 0.67 
2013 0.29 5.90 3.33  -1.55 1.00 0.05 

 

 

Panel B. Equity Options 

Year  Intraday    Open-Close 
  Call Put Total  Call Put Total 

2004 -5.46 -1.37 -6.82     

2005 -4.92 -0.94 -5.86  -1.37 -0.38 -1.74 
2006 -3.54 -0.14 -3.68  -1.57 -0.04 -1.61 
2007 -2.48 0.66 -1.82  -1.15 -0.08 -1.23 
2008 -1.11 1.73 0.62  -1.92 0.01 -1.91 
2009 -1.09 0.19 -0.90  -2.17 -1.49 -3.66 
2010 -1.15 0.28 -0.87  -3.22 -1.44 -4.66 
2011 -1.59 0.55 -1.04  -2.75 -0.73 -3.48 
2012 -1.73 0.07 -1.65  -1.66 -0.51 -2.17 
2013 -1.68 -0.63 -2.31     
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Table A.20 Trading strategy 

We compare overnight returns for SPY options with their trading costs. We follow Muravyev and Person 

(2017) in using the adjusted effective bid-ask spreads for two investor types. “Algo” denotes option trades 

that are likely initiated by smart execution algorithms (“Non-Algo” reflects all trades excluding algo 

trades; their trading costs are equal to the conventional effective bid-ask spread). “Combined” includes all 

trades, both algo and non-algo. We report results for two subperiods: before and after the tick size for 

SPY options was reduced to a penny on September 28, 2007. The last column reports profits from a 

hypothetical trading strategy that sells and delta hedges SPY options overnight and incurs transaction 

costs typical for an algo-trader.  

 
 

 Option 
Overnight 
Returns  

Trading Costs Profits 
after Costs 
for Algos 

  
Period Non-Algo Combined Algo 

Pre-Penny Pilot (< Sep2007) -0.65% 3.93% 2.25% 0.66% -0.01% 

Post-Penny Pilot (> Sep2007) -0.64% 1.24% 0.84% 0.05% 0.60% 
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